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A set of requirements for the Deep Space Network Standard Real-Time Language has
been recently drafted. This language will be a modem high-order programming language
well-suited to the special needs of real-time programs developed for use in the Deep Space
Stations and Network Operations and Control Center. Nearly all DSN real-time program-
ming has, in the past, been done using assembly language. The implementation of a
standard high-order language is being planned in order to promote the development of
real-time programs with higher reliability, increased programmer productivity, language
commonality, flexibility, and re-use potential, and to provide a means for reducing the

current life-cycle costs of DSN software.

I. Introduction

The DSN real-time software includes tracking and data
acquisition software and mission support software. These pro-
grams, typically driven by high-speed data interrupts, have
rigid input/output format requirements and must interface
with special-purpose external hardware.

Because of the serious time constraints imposed by the
high-speed interrupts, and the strong dependencies on external
data formats, these programs have in the past been written, for
the most part, in assembly language. This practice has pro-
duced software with a high development and maintenance
cost. As the hardware base has evolved over a period of years,
and as different missions have imposed their differing con-
straints on the software, large existing programs have had to be
almost completely redeveloped without substantial support
from the earlier software.

The DSN system environment has in the past included a
number of different small- to medium-size computers, with
widely divergent characteristics. This diversified type of envi-
ronment is expected to extend also into the foreseeable future.
Future DSN capabilities, for example, are planned to include
the use of single-chip microprocessors as part of the standard
DSN set of Control and Computation Modules (CCMs).

A standard higher-order language specifically suited to the
type of real-time programs developed by the DSN is needed to
promote higher reliability, increased programmer productivity,
language commonality, flexibility, and provide a means for
reducing the current life-cycle cost of DSN software. A set of
requirements for such a Deep Space Network standard real-
time language has been recently drafted. This article summa-
rizes that draft material. Work is continuing on refinements to
these requirements, and completion of the language specifica-
tion is scheduled for the end of this fiscal year.
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Il. Brief Histo
Reliable So

The development of higher-level computer programming
languages is motivated by the desire to increase programmer
productivity and make the process of programming indepen-
dent of the particular machine used. The rapidly changing
computer hardware, together with a rapidly expanding domain
of problems to be handled by means of a digital computer,
necessitates the viewing of a programming language as a vehicle
for the expression of the problem in abstract terms, obviating
a detailed machine-level specification of the algorithm. Thus, a
programming language forms an interface between its users,
who are concerned primarily with the ease of expression of a
problem in abstract terms, and the instruction set on a partic-
ular real machine.

of Language Design for
are

As the class of problems to be solved increases in scope and
complexity, likewise does the necessary complexity of expres-
sion within the programming language. The ability of a user
to understand and accurately communicate his intentions
through the programming language necessarily becomes more
difficult, yet at the same time becomes more crucial. The
programming language must accept the burden of providing a
vehicle for the expression of the problem in a conceptually
clear manner in order to promote programmer understanding
of what he has created.

This need has been recognized within the last decade, with
various approaches being taken. After an early period, in
which the development of extended assembly languages, such
as FORTRAN, (Ref. 1) paralleled the development of com-
puter architecture, the need for greater abstractions from the
basic machine was recognized. The introduction of such lan-
guages as ALGOL 60 (Ref. 2) and LISP (Ref. 3) signalled the
beginning of an age of higher-level languages primarily oriented
toward the user. An attempt was made to formally express the
semantics of these languages without reference to the concrete
machine. This attempt at formalization of the semantics of a
programming language was carried further by PL/1 (Ref. 4)
and ALGOL 68 (Ref.5) in very different manners. Both
languages sought to increase the flexibility and universality of
the language. ALGOL 68 chose to follow a course of greater
orthogonality (using as few rules as possible, minimizing the
number of special cases) and generalization of structure, lead-
ing to almost unbounded power being given to the bewildered
programmer. PL/1 chose to increase the power of the language
through a large set of constructs and specialized rules that the
bewildered programmer needed to be aware of in order to
express his or her problem.

Soon, a realization of the high cost of software production

led to a methodology emphasizing a structured approach to
the development of computer programs. This methodology

132

initiated, among its supporters, a shift away from languages
such as ALGOL 68 and PL/1, in favor of simpler languages
with features encouraging more disciplined programming.

The programming language PASCAL (Ref. 6) was the earli-
est and perhaps the most successful of the languages to be
designed at this time. PASCAL contains a minimum number of
flow-of-control constructs, no default declarations or auto-
matic type conversions, and a clear, concise syntax. PASCAL
sought to treat language semantics in a manner that would
allow both a precise implementation specification and a de-
scription of a formal (logical) system in which properties of
the program could be derived (Ref. 7).

Various other languages, such as ALPHARD (Ref.8),
EUCLID (Ref.9), GYPSY (Ref.10), MADCAP-S (Ref. 11),
STRUGGLE' (Ref. 12), and ALPO! (Ref. 13) have generally
followed the same ideas of semantic description used by
PASCAL, but each has proposed somewhat different sets of
language features to increase program reliability, provability,
power, etc.

The proliferation of programming languages and the result-
ing program incompatibilities which have occurred in the last
five to ten years have spurred various large users of software
toward the development of a standard programming language
(cf. Ref. 14). The British government adopted the CORAL 66
(Ref. 15) programming language as its standard in 1975, the
German government is now completing their standardization
on the language PEARL (Ref. 16), and the French government
is currently working on defining a French standard language.
The U.S. Department of Defense has recently completed a
study to define the requirements of a DOD standard real-time
higher-order language (Refs. 17, 18), to be used in all defense
system applications. The language, to be called DOD-1 (with
PASCAL as its base language), is scheduled to be rigorously
defined and a test translator for it implemented by early 1979.
The DSN has patterned its draft requirements, summarized
here, after the DOD requirements.

lll. Goals for the DSN Standard Real-Time
Language

This section lists and discusses a set of general goals to be
met by the DSN standard real-time language. These are pre-
sented in their approximate order of importance.

A. Life Cycle Cost Effectiveness

The overriding goal of using the DSN standard higher-order
language is to reduce the life cycle cost of DSN software,

IThese languages have not been implemented.



including initial development cost, maintenance and operation
cost over the system lifetime, and costs associated with retiring
a program (de-implementation), if any.

A great deal of each new DSN software system develop-
ment is a repetition of programming processes that have been
written before. Yet, many DSN systems are started from
scratch with little benefit from this previous work, other thar
what an individual programmer might remember having been a
part of the previous project. Higher-order languages are pre-
ferred, of course, and used when possible, but the assembly
language of the host machine is usually necessary at present.
Even with the “same” higher-order language, differing dialects
and local computer system alterations make it almost impos-
sible to sustain a truly powerful production environment.

The DSN standard higher-order real-time language will
remain stable (except under DSN Engineering Change Control
Board direction) to ensure efficient reutilization of once-
written software. Such stability will also tend to minimize the
cost of sustaining an effective production environment.

B. Reliability

Real-time programs in the DSN control critical real-time
processes in which there is a potentially severe penalty for
faulty operation. DSN Software therefore must strive toward
total reliability. The DSN standard real-time programming
language will support a programming environment which fos-
ters the creation of well-structured, readable, understandable,
testable, manageable programs. Such characteristics in a pro-
gram are known to promote program reliability through fewer
design faults, decreased scope of error, and increased ease in
fault detection, location, and repair.

C. Efficiency

For programs that demand it, the object code generated by
the language translator must be efficient at run-time, mainly in
terms of speed of execution, but also in terms of storage
requirements. The handling of high-speed telemetry interrupts,
for example, necessitates rapid response and processing speeds.
The DSN real-time language must therefore provide users a
means to optimize time-critica] portions of their programs
when necessary. Since such optimization is likely to be very
machine-dependent, the real-time language must permit users
to access low level features of the host machine in a way not
conflicting with other goals of the language.

D. Maintainability

DSN programs written in any language must be maintain-
able. Recent industry studies (Ref. 19) and DSN qualitative
studies have shown that program maintenance accounts for
some 60% of the life-cycle costs of large programs.

Programs are made maintainable by modular construction,
functional organization, localized scoping of data connections,
simple control structures, the absence of special default fea-
tures, easily understandable higher-level language constructs,
and a stable, controlled programming environment. Addition-
ally, maintainability relates to the availability of diagnostic
tools and measurement aids which support the calibration,
alteration, fault detection, fault isolation and location, and
repair of the program. The DSN real-time language will form
the kernel of a unified total programming system which will
accommodate all of these needs.

E. Stability

The programming environment within which software is
developed needs to be stable in order to provide reasonable
assurances of the long-term reliability, validity, maintain-
ability, and reusability of DSN Software. The programming
system must have evolutionary potentials and avenues for
change, lest it become inadequate for future missions. How-
ever, such evolution must be at a controlled, cost-effective
pace.

The DSN standard real time language and its processor
designs will be owned, implemented, and maintained by the
DSN. Alterations will only be permitted as directed by DSN
Engineering Change Control Board? action. Such changes will
invariably require assessment of impacts, costs, and benefits
prior to the implementation of new or altered features.

F. Training

The time required to learn the DSN standard real time
language should be relatively short. In relation to this goal, the
DSN standard real time language is required to be similar in
certain ways with other languages being used in the DSN
(principally MBASICI™ (Refs. 20, 21)). The features of the
DSN language are meant to be English-like and self-descriptive.
Nevertheless, the features will be well documented, with an
accurate description of the language semantics oriented toward
the understanding level of its users.

G. Transportability

Due to the range and diversity of programmable hardware
in the DSN, reusability of software items relies on portability
of program parts and transferability of personnel skills among
the various machines used. Even among real-time programs
with device and machine dependencies, there are a great
number of operations, human and program, common among
different software efforts on the different machines. The stan-
dard language will provide a means to isolate those portions of
real-time programs which do and do not have an inherent

20r other JPL or NASA responsible authority.
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machine dependence, so that significant portions of programs
may be reused as needed in other DSN applications.

The standard language will also increase the transportability
of programmer knowledge and skill. The DSN standard real-
time language is intended to allow each programmer to apply
his or her skills among all machines and other tasks being done
in the DSN.

IV. General Philosophy of Requirements

The DSN standard real-time language is intended to be a
small, efficient, real-time-oriented, state-of-the-art, modern
programming language for the DSN which can be adapted, via
its extensible nature, to be useful for the entire spectrum of
DSN real-time applications over the wide range of hardware
characteristics projected for future use. The *“smallness” of the
language is meant to accommodate generality of expression
while creating efficient programs using an affordable compiler
(a few man-years per implementation).

The DSN real-time operational environment differs in im-
portant ways from machine to machine, and the needed fea-
tures of DSN programs vary, depending on the particular
machine and subsystem. Because of this, those facilities
that can be better programmed as subsystem-dependent or
hardware-dependent subroutines or macros have not been in-
cluded in the real-time language requirements. The language
therefore will have only very basic built-in input/output facili-
ties, no specific mechanisms for parallel processing (other than
interlocks), no co-routine syntax, and no built-in data types or
constructs to handle the special and diversified hardware char-
acteristics found in the present DSN hardware. All of these
special characteristics will, however, be accommodatable by
macros and subroutines written in the language which, by
means of standard libraries, can be shared by groups of users.

A general principle that has been used in the formulation of
the requirements is that the choice of syntax and semantics
should follow the principle of “least astonishment.” That is,
there is probably a flaw in the language design if the “average
programmer” is astonished to learn about some aspect of the
language. The language is meant to appear sensible both to the
average skilled programmer and the language specialist alike.

V. Language Requirements

The specific requirements of the language have been assem-
bled in keeping with the general goals and requirements philos-
ophy outlined above.

134

Briefly, the overall requirements to be satisfied by the
language are:

(1) Statement-oriented.

(2) Supports top-down structured development of
programs

(3) Strongly typed with full compile-time type checking

(4) Extensible, supporting data abstraction by means of a
data definition facility

(5) Multi-layered language with several levels of defini-
tional power

(6) Able to control non-standard external devices

(7) Allows separate compilation of program segments
with full interface verification prior to execution

(8) Part of a total programming environment
(9) Compilable on DSN standard minicomputers

(10) Generates code for DSN standard minicomputers and
CCM’s

In this section we describe the salient features of the language
which revolve around the data definition facility: its role in
supporting data abstraction, its expanded definitional power,
and its use in controlling real-time processes. We also briefly
introduce the concept of a total programming environment for
language support. Subsequent DSN Progress Report articles
will describe these and other aspects of the language in more
detail.

A. User Data Definition Facility

The DSN standard real-time language supports data abstrac-
tion by allowing the user to define new data types and opera-
tions within programs. New data types are defined by specify-
ing the class of data objects comprising the type and the set of
operations applicable to that class. The definition of the class
of objects and operations on the objects is done by using the
composition of previously defined data types and control
structures, which, if required, can be augmented by the use of
a medium-level, closer-to-machine-language layer described in
section B below.

Once defined, these abstract data types may be used as one
would use a built-in type; one may declare identifiers ranging
over the data type, then operate on the data by means of the
defined operations. By allowing access to the new object only
by means of the pre-defined operators, an encapsulation of the
data definition supporting the abstraction occurs, thereby
guaranteeing the integrity of the object being defined; that is,
no unauthorized modification of the representation may
occur.



The number of specialized capabilities needed for a com-
mon language for all DSN real-time programming tasks is large
and diverse. In many cases, there is no consensus as to the
form these capabilities should take in a programming language.
No higher-order language can build in all the features useful to
a broad spectrum of applications, or which would anticipate
future applications and requirements, or even provide a univer-
sally “best” capability in support of a single application area.
Assembly language has had to serve as the main language tool
for most existing DSN (and other) real-time programs because
no higher order language has been available that can accommo-
date both the very low-level programming constructs as well as
higher-order abstractions.

To require that a language be implemented which has only
those primitives in the language required to handle current
DSN applications is to build in obsolescence. Rather, the DSN
real-time language must be robust in order to survive evolving
hardware and software requirements. It must contain all the
power necessary to satisfy current applications, yet, at the
same time, contain the ability to extend that power to new
and different application tasks.

A language with facilities for defining data and operations
restricted to that data offers the capability to add new
application-oriented structures and to use new programming
techniques and mechanisms through descriptions written en-
tirely within the language. It accommodates communication
with non-standard external devices and diverse operating envi-
ronments. The DSN standard real-time language definitions
will have the appearance and costs of features which are built
into the language while actually being catalogued as accessible
application packages.

No single programming language can fulfill all the goals set
forth earlier; but the DSN language, with its data and opera-
tion definition facilities, can adapt to meet changing require:
ments in a variety of areas while yet remaining very stable
itself, thereby promoting efficiency, maintainability, reusabil-
ity, etc.

B. Multi-Layered Language

The implementation of an abstract data type via the DSN
standard real-time language data definition facility will be
permitted to have more expressive power than will be allowed
in the rest of the user program. Inside a data definition
structure, the pointer data type may be used in order to
implement the representation of linked structures or other
data objects requiring the use of a pointer. Additional lower-
level language features available only within the data definition
facility include 1) a medium-level language layer which is
closer to the machine language of the host computer, 2) calls

to routines coded in other supported languages, and 3) operat-
ing system calls. Each of these capabilities is particularly
important to support efficient control of real-time processes.

The medium-level, closer-to-the-machine-language layer will
provide a machine-dependent method of accommodating those
portions of DSN real-time programs which must absolutely
have access to specific machine architecture or bit and byte
level manipulations. The layer will consist of the normal high-
level control constructs, a set of special machine-level data
types (such as bit and byte), and a series of built-in functions
which provide a one-to-one correspondence to the instructions
present on the base machine. This medium-level language layer
will thus provide machine-level access together with the high-
level structuring tools present in high-level languages. A special
machine-specific medium-level language will be required for
each implementation.

Such a medium-level language concept is not new; it began
with the medium-level language PL/360 (Ref. 22) developed
by Niklaus Wirth for the IBM 360 in 1972. Since then, similar
languages have been developed for many machines, following
the style of PL/360.

The layered-language capability can be used, for example,
to define a DSN standard (but not built-in) library data type
called, say HIGH_SPEED_DATA BLOCK, with data-
accessing operations coded using the medium-level layer to
unpack and retrieve the information as well as allocate and
deallocate blocks as necessary.

C. Real-time Input/Output Control

The DSN standard real-time language will support control
of real-time processes, both through generalized input/output
operations and the use of its data definition facilities. The
language will also provide an interlock construct as a primitive
mechanism for programming data definitions used for synchro-
nization of parallel and concurrent processes.

A large part of many DSN real-time programs is directly
concerned with awkward or application-tailored input and
output equipment, which have curious input/output instruc-
tions and special status words, and which deal with data in
elaborate non-standard, machine-dependent formats, none of
which can be clothed in the comfortable abstractions of a
high-level programming language. As mentioned earlier, it is
not possible for a single standard higher-level real-time lan-
guage to contain efficient real-time constructs which are suffi-
ciently general to be able to handle all, or even part, of the
peripheral device interfaces likely to be seen in the DSN
real-time environment.
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Accordingly, any communication with external devices
which is not possible via the built-in input/output constructs
in the DSN standard real-time language can be handled by
means of the data definition facility. The programmer will be
able to define an abstract data type and operations which
handle the necessary protocols and perform all the necessary
communications. Inside the data definition structure, the pro-
grammer will have the use of the pointer data type, the
medium-level language layer, calls to routines coded in other
supported languages, and operating system requests.

D. The Total Programming Environment

The DSN standard real-time language will not necessarily
require that the object machine have an operating system. The
language implementations initially will be suitable for pro-
gramming both the DSN standard minicomputer and the Con-
trol and Computation Modules (microprocessors). The lan-
guage translator is currently planned for implementation on
the DSN standard minicomputer, with a cross-compilation
capability for compiling programs targeted for the Control and
Computation Modules. There is no requirement for self-
hosting on the CCMS.

The mere availability of a particular language processor by
itself is not sufficient to satisfy the goals which have been set
forth earlier. The time is past in which a modern language can
be considered apart from the programming system in which it
resides. The presence of synergistic tools to support program
development is an essential factor in the cost-effective fabrica-
tion of programs of the complexity found in DSN tasks. For
these reasons, and following the precedents of ECL (Ref. 23)
and MBASIC!™, the DSN real-time language will require a
programming system designed specifically for the language.
Among the elements of this programming system are (1) an
intelligent text-editor, with features designed to aid in the
coding of programs written in the language; (2) an intelligent
linkage-editor (collection program) with facilities for resolving
more of the module interfaces than just addresses; (3) a run-time
support system that includes an intelligent, interactive test-
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probe capability; (4) an interactive mode of program develop-
ment testing, with some emulation of the real-time environment;
(5)a monitor capability which will provide performance
measurement information, such as the total number of object
code instructions, the machine cycle times required to support
each of the statements in the standard language, the statement
execution frequency counts, and the time-sampling statistics
collected at run-time (either in interpretive or compiled-mode
operation). Such performance measurements lead to program-
mer awareness of the time and storage characteristics of his
code, and can substantially improve or optimize source code as
required to meet applications constraints.

VI. Conclusion

The requirements reported in this article are, at this writing,
in a preliminary state. Completion of the requirements and the
endorsement of these by both programmatic and implementa-
tion organizations is required before the actual language and
processor design activities begin. Liaison with institutional and
flight-support computing efforts in their current quest for a
JPL-wide standard real-time language may also be expected to
influence the final set of requirements. (The current belief is
that the DSN standard real-time language can form a kernel
subset of the JPL standard real-time language, for the middle-
to-large class of machines).

The authors do not mean to imply by this article that a new
language must be invented to fulfill the requirements summa-
rized here. However, since no higher-order languages currently
implemented on DSN machines have been deemed adequate
for DSN tasks (as borne out by the almost total reliance on
assembly language), it seems fairly certain that whatever lan-
guage is ultimately chosen (existing, adapted, or invented), the
processor for that language will have to be designed, docu-
mented to DSN standards, and implemented. Current plans
call for the completion of the DSN real-time language on the
MODCOMP-1I by the end of FY-80 and on the CCM’s by the
end of FY-81.
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